
A System for Real-Time Deformable Terrain
Justin Crause 

University of Cape Town 

jcrause@cs.uct.ac.za 
 

Andrew Flower 
University of Cape Town 

aflower@cs.uct.ac.za 
 

Patrick Marais 
University of Cape Town 

patrick@cs.uct.ac.za 
 

 

ABSTRACT 
Terrain constitutes an important part of many virtual 

environments. In computer games or simulations it is often 

useful to allow the user to modify the terrain since this can help 

to foster immersion. Unfortunately, real-time deformation 

schemes can be expensive and most game engines simply 

substitute proxy geometry or use texturing to create the illusion 

of deformation. 

We present a new terrain deformation framework which is able 

to produce persistent, real-time deformation by utilising the 

capabilities of current generation GPUs. Our method utilises 

texture storage, a terrain level-of-detail scheme and a tile-based 

terrain representation to achieve high frame rates. To 

accommodate a range of hardware, we provide deformation 

schemes for hardware with and without geometry tessellation 

units. Deformation using the fragment shader (no tessellation) is 

significantly faster than the geometry shader (tessellation) 

approach, although this does come at the cost of some high 

resolution detail. 

Our tests show that both deformation schemes consume a 

comparatively small proportion of the GPU per frame budget 

and can thus be integrated into more complex virtual 

environments. 

Categories and Subject Descriptors 

I.3.6 [Computer Graphics]: Methodology and Techniques - 

Graphics data structures and data types 

 http://www.acm.org/class/1998/ 

General Terms 

Algorithms, Performance, Design. 

Keywords 

Terrain Deformation, OpenGL, Geometry Tessellation, Parallax 

Mapping, Caching 

1. INTRODUCTION 
Modern computer games exhibit a high level of realism, 

utilising detailed virtual environments which often respond to 

player interaction. Some interactions, such as opening a door, 

can be easily scripted. Other interactions – triggering a 

landmine, for example - result in more fundamental changes to 

the world geometry. In the latter case, the world designers often 

provide replacement geometry, such as a crater, which can be 

swapped in based on the interaction type. While these methods 

may give the illusion of a responsive world, more complex 

interactions and responses are not generally supported. For 

example, if a tank rolls across terrain, the game engine will 

usually texture a track pattern onto the ground mesh. Close 

examination will quickly reveal this, which causes a break in 

user immersion. 

Terrain forms a major component of many game worlds and 

realistic physical interaction with terrain helps to foster user 

immersion. Such interaction can be expensive to compute, 

however, and most game engines use low quality alternatives 

such as texturing or pre-computed proxy geometry. 

In this paper we present a framework to manage the efficient, 

real-time deformation of terrain on a range of graphics 

hardware. In this context, deformation refers to the warping of 

the terrain geometry in response to forces arising in the game 

world, such as explosions or passing vehicles. In order to 

accomplish this, we developed a tile-based terrain caching 

scheme and combined this with extensive use of the 

programmable Graphical Processing Unit (GPU), which exists 

on most modern computers. The core innovation is the efficient 

use of GPU textures to store deformation data – this ensures 

that all deformations are persistent and that the system response 

does not degrade when large numbers of deformations are 

applied. To ensure efficient rendering of geometry, a level-of-

detail scheme, geometry clipmaps [1], is used. To cater for both 

old and new GPUs, we developed two deformation schemes: 

one based on fragment shaders, and another based on geometry 

shader tessellation. Current GPUs can support both deformation 

modes. 

The paper is organized as follows: Section 2 discusses 

background and related work. Our system is presented in 

Section 3 and Results discussed in Section 4. We conclude in 

Section 5 and then provide some possible extensions for future 

work. 

2. BACKGROUND AND RELATED 

WORK 
Previous work on deformable terrain systems is not readily 

available in the public domain. Unfortunately computer game 

engines use proprietary techniques which are not generally 

published. Consequently, much information about games or 

systems that may incorporate such techniques is speculative and 

based on observation of the systems. Despite an extensive 

literature search, no specific literature was found pertaining to 

the kind of caching scheme required for our system. The 

framework presented in this research was designed specifically 

to meet the requirements of a deformable terrain system. 

Our framework requires an efficient, easily dynamic mesh 

representation to ensure high frame rates. A number of 

techniques exist [2] for representing a terrain mesh. Common 

algorithms include ROAM [3], Geometrical Mip-mapping [4] 

and Geometrical Clipmaps [5]. These algorithms usually require 

the terrain mesh to be updated regularly on the CPU and 

streamed to the GPU. Our system makes use of Geometrical 

Clipmapping, which focuses on a Level-of-Detail nested mesh 
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scheme centred on the camera, since it maps readily to a GPU 

implementation. 

Triangle Mesh Tessellation takes an existing triangle mesh and 

sub-divides each triangle to create additional triangles. The aim 

of this process is to produce a more detailed model from a 

coarse mesh. If tessellation is done adaptively, such that areas 

without elevation aren’t tessellated, displacement mapping can 

be applied to apply fine detail to the mesh in an efficient 

manner [6].  

Many tessellation schemes exist. Some evaluate tensor-product 

or B-spline surfaces, but these are expensive [8]. Subdivision 

surfaces, generated by algorithms such as that of Catmull and 

Clarke [9], are a commonly used approximation to these 

surfaces. Currently two major schemes exist for computing 

subdivision on GPUs [10]. One involves multiple passes with 

intermediate results being stored in graphics memory whilst the 

other performs direct evaluation in a single pass but requires 

texture lookup tables for tessellation patterns. Accurate 

subdivision surface generation is not essential to the goals of 

this problem. Instead basic refinement schemes [11], defined in 

barycentric coordinates, are used to tessellate the deformed 

terrain in this system. An alternative to using tessellation is to 

use texture mapping methods to provide illusionary detail. 

Texture mapping is a well-known and widely used method to 

enhance the realism of computer generated content [12]. There 

are a variety of texture-based techniques that would be suitable 

for our system. These techniques include normal mapping [12], 

relief mapping [13], [14] and parallax mapping [13], [15]. 

These are all examples of bump mapping techniques [16] which 

are used to improve realism of computer generated surfaces. 

Bump mapping can use simplified geometry and add back detail 

using data stored in textures. However, this may still produce 

unrealistic looking objects. This can be solved by actually 

displacing geometry through displacement mapping which was 

introduced by Cook [18]. Displacement mapping actually 

moves vertices on the objects surface to add real detail [19], 

[20]. 

We implemented a number of software prototypes to compare 

the different techniques and based on these it was decided that 

parallax mapping was the most suitable method, as it provided 

the most visually pleasing results. Parallax mapping can be 

extended to include offset limiting and also implemented with 

an iterative loop, both of which better the final result. The 

interested reader is referred to [13], [21], [22] for more details. 

3. REAL-TIME DEFORMATION 

FRAMEWORK 
Our system combines several established techniques to achieve 

real-time performance. The core idea is to use additional 

textures to store deformations and to re-synthesize the relevant 

deformations on demand as the viewport moves across the 

terrain. 

As identified earlier, there are two main fields that would 

benefit from a real-time deformable terrain, namely computer 

games and 3D world modelling. A games engine utilising our 

framework would be able to fully support destructible terrain. 

For example, shooting a weapon or tossing a grenade will result 

in a plausible, programmatically controllable deformation of the 

target area. Even the most advanced game engines, such as the 

engine to be used in the upcoming Battlefield 3 [23] game, still 

lack fully deformable terrain. 

3D model designers who create landscapes for movies could 

benefit from a system which allows for real-time creation. The 

biggest challenge when creating landscapes is that they need to 

be rendered before they can be viewed. Our system allows for 

changes to be seen in real-time as they are applied. The system 

would, of course, need to be slightly modified to improve 

control methods for deformation application, by adding brushes 

and erosion tools, for example. Figure 1 shows the kind of 

terrain that can be created using the system. 

 

Figure 1: Sample created landscape 

Before we developed our final framework, a number of design 

constraints had to be considered since we wished our system to 

run on a wide class of modern GPU hardware. 

3.1 System Constraints 
In order to accommodate a broad range of consumer graphics 

hardware, our algorithms targeted the NVIDIA 9xxx series of 

GPUs as our baseline. These devices were the first generation 

that supported OpenGL 3.x and Geometry Shaders, which are 

minimal requirements for our framework. 

To ensure smooth, real-time performance, we need to ensure 

that a minimum frame rate of at least 30 FPS is achieved. Given 

that the deformation system will have to work in concert with 

several other rendering phases, we arbitrarily set our ideal frame 

rate as 120 FPS, 4 times the minimum frame rate. 

Any deformations that are applied to the terrain need to persist. 

This requirement motivated the use of the caching system 

explained in section 3.6. The caching system allows for 

multiple high-detail maps to cover a single coarse-detail map by 

swapping map data in when required. Multiple coarse-maps 

would be possible but in order to limit scope only a single map 

was utilised in the system prototype. 

The system also needs to be free of visible artefacts such as 

holes in the ground (cracks) and level-of-detail jumps (popping) 

as this it would break immersion. 

3.2 Deformation Frame Work 
Based on our analysis, we identified the following major 

components shown in Figure 2: 

1. Caching System: The need for a caching system arose 

when planning the system and realising that multiple 

texture maps are needed. Both the coarse and high-detail 

deformation maps have accompanying partial derivative 

maps; together these require large amounts of GPU 

memory. The caching system solves this by determining 

what texture data needs to be loaded onto the GPU at any 

given time. Based on the system constraints the caching 

system only handles high-detail maps but could easily be 

extended to handle coarse-detail maps. The caching system 

is discussed in section 3.6. 



2. Deformation System: The deformation system is 

responsible for creating the deformations on the terrain. 

There are two levels of deformation: coarse and high-

detail. The deformation system is also responsible for the 

generation of partial derivative maps. Common methods 

for terrain deformation use proxy geometry to simulate the 

effects on terrain. These do not displace terrain accurately 

and are often pre-computed, thus detracting from the 

overall realism. However, using proxy geometry is a 

significant improvement over not applying any form of 

deformation or simply using a new texture to represent an 

explosion effect. Details for the deformation system are 

discussed in section 3.4. 

3. Geometry Clipmap: Because terrain data further away is 

harder to see, highly detailed geometry at further distances 

is not needed. This means using a uniform grid mesh is 

unsuitable as more detail is needed closer to the camera 

and less further away. The geometry clipmap was chosen 

to represent the terrain because on each successive level of 

the clipmap, the size of the cell doubles in size. Our 

implementation of the clipmap is covered in section 3.3.3. 

4. Texture-maps: Textures are used to store the deformation 

and normal map data. Deformations are stored in the form 

of height-maps and normals in partial derivative maps. 

Storing all the data as textures means it can be easily 

accessed in the shader files. They can also be updated in 

the shaders to allow for quick deformation, as only small 

regions are modified and then immediately available for 

rendering. This removes the heavy cost of transferring the 

data back and forth between CPU and GPU. Height and 

partial derivative maps are discussed in sections 3.3.1 and 

3.3.2. 

5. Representation: There are two levels of detail - one 

representing coarse-detail and one representing high 

quality deformations. The coarse-detail representation 

encapsulates large scale deformations, while the high-

detail representation is used for small, high resolution 

deformations. A split multi-resolution representation is 

sensible since high-detail deformations, such as footprints, 

will only be visible relatively close to the camera. Two 

different approaches to rendering the high-detail were 

developed: one that creates additional geometry and one 

that relies on texture "tricks" to give the illusion of detail. 

All the deformation data is stored in texture files as height-

map data. Each of these different methods is explained in 

section 3.5. 

3.3 Data Structures 
The primary data structure employed by our system is a height-

map which stores elevation data in a single channel of a texture. 

Because deformations must persist, the textures which store the 

data need to be saved and loaded when needed. The caching 

system manages this process and is discussed in section 3.6. 

Another important data structure used in the system is the 

partial derivative (pd) map. Both the height and pd-maps are 

stored on the GPU for use in the shaders and to provide fast 

access to their data. Vertex Buffer Objects (VBOs) are used to 

store the geometry for the clipmap on the GPU - see below. 

3.3.1 Height-map 
Terrain elevation data is stored in the form of a height-map 

image textures on the GPU. These textures consist of a single 

16-bit channel that allows for 65536 different values of 

elevation discretisation. This allows for high mountains etc, 

whilst still retaining adequate detail across a wide range of 

height values. Height-maps are a very common and inexpensive 

way to represent a 2.5 dimension mesh. Two types of height-

maps are used in our system: coarse-maps and detail-maps. The 

coarse-map we use is             pixels and represents an 

area of                 based on a scale of      per texel. 

The second set of height-maps (detail-maps) are used to 

represent finer detail on the terrain. The set of detail-maps is 

created to tile the area covered by a coarse-map. This allows for 

distant detail-maps to be omitted from the rendering process as 

they are too far away to be noticed. The process of caching 

detail-maps is covered in section 3.6. Detail-maps were chosen 

as 2048 x 2048 textures with each texel representing 0.03m. 

3.3.2 Partial derivative map 
Lighting is an essential part of surface rendering in modern 

computer graphics. Lighting uses reflectance functions that 

operate on surface normals. The most popular way to store 

surface normals is through the use of normal-maps. Storing 

normal-maps for the large coarse-map and for each of the 

detail-maps would consume a considerable amount of GPU 

memory. For this reason an alternative storage technique was 

used. Partial Derivative (PD) Normal Maps [24] are essentially 

the same as regular normal-maps, except that the partial 

derivatives are instead stored for x and z rather than all three 

components having the y component calculated at render time. 

This method saves on a third of the memory storage at the small 

cost of reconstruction as well as reducing texture-fetch latency. 

PD-maps also benefit bump-mapping, as it removes the need for 

tangent-space conversions because the partial derivatives can 

simply be added to form the composite normal. 

3.3.3 Clipmap 
The layout and formation of the set of clipmaps is the same as 

previous implementations [1]. In order to reduce memory used, 

the components that exist in each clipmap level are only stored 

Figure 2: Main components of a deformation system 



once in VBOs. During render time, they are then scaled and 

translated into the correct location. In addition to the vertex 

VBOs, there are corresponding VBOs for texture coordinates 

and indices. The vertex indexing is ordered in the form of 

triangle strips to reduce the index buffer size and to make better 

use of the post-transform vertex cache. While traversing the 

environment, terrain detail near the edges of each clipmap 

displays sudden changes as the level-of-detail in a region 

changes. 

 

Figure 5: Clipmap with 3-levels, divided into quads: 

A sample clipmap is shown in Figure 5. It should be noted that 

the innermost level is not the centre of the clipmap. However, 

this does not affect the position of the camera for large size 

clipmap sizes. Each vertex stores its position information and an 

associated texture coordinate, which is used to look up elevation 

data in the shaders to deform the clipmap. The vertices of the 

innermost level are spaced such that sampling adjacent texels 

map to adjacent vertices. The clipmap and camera are not 

translated through the world. Instead the texture coordinates are 

shifted by the amount the camera gets moved by the user. 

The sampling rate of the vertices provides sufficient detail for 

the coarse deformations but lacks the resolution for high-detail. 

This is where one of the two high-detail methods comes in and 

adds the additional resolution to the innermost clipmap region. 

3.4 Deformation System 
An overview to the deformable terrain system is provided in 

Figure 3 which shows the linking between the deformations and 

rendering components. These two components share the same 

set of textures which aids in performance and reduces the 

memory overhead. The arrow shows the flow of information in 

the system. The blocks with dashed outlines represent data 

structures used as input. 

A deformer object is created in the system and is responsible for 

handling the various deformation tasks for both coarse and 

high-detail, as well as the calculation of the PD-maps. The 

deformer makes use of a Frame Buffer Object (FBO) which 

allows for the deformation to be rendered directly to a texture 

stored on the GPU. More information on deformations is 

provided in Section 3.4.1. 

On the rendering side of the system, the clipmap, which is 

stored as a VBO is used as input to the various shaders. The 

shaders used vary, depending on whether the Geometry 

Tessellation or Parallax Mapping method is running. Both make 

use of the clipmap VBO to represent the coarse-detail but utilise 

the high-detail maps differently - Section 3.51. 

3.4.1 Deformations 
Deformations to the terrain are applied through the use of 

stamps. We define three types of stamps. The first is a 

functional stamp, which applies a specific mathematical 

function to the area over which the stamp is applied. The second 

stamp is based on a texture loaded at start-up. The texture is 

stored as a height-map which is used to alter the surface of the 

Figure 4:  Examples of stamps in the system 

Figure 3: Overview of deformation system 



terrain. The last type of stamp is dynamic, meaning it varies 

over time. 

Figure 4 shows examples of the texture and functional stamps 

available in the system. Each of the stamps is applied at a 

specific location on the terrain, based on the location clicked by 

the user on the terrain. Stamps can have other properties 

associated with them, for instance they have an intensity value 

which denotes how strong the deformation should be, and they 

also have a scale which denotes the size of the area being 

affected by the deformation. These parameters along with the 

stamp’s ID are needed by the deformation engine to work out 

where to place the new deformation. Deformations can occur on 

either the coarse or high-detail maps, both of which use the 

same functions to create the deformations, they just affect 

different textures. The dynamic stamp cannot easily be 

presented in images and as such we refer the reader to our 

website for video files [27]. Due to limitations of the caching 

system, deformations have a maximum distance at which they 

can be applied. For the coarse-map, this distance is much larger 

than in high-detail mode. We do this because a coarse-map 

covers        whereas a high-detail map only covers 

approximately      . As such only some maps will be 

available in GPU memory, so a limit on how far away from the 

camera deformations can be applied is enforced. One solution to 

this would be to allow for an offline process where 

deformations that fall on unavailable tiles are added to a queue 

and this queue is processed in the background. However, this 

was beyond the scope of this research. 

When deformations occur on the edge of a texture, the 

neighbouring tiles will also be affected. As such separate 

deformations need to be applied to each texture, which is loaded 

in turn. After each deformation has been applied, the 

corresponding pd-map needs to be updated to reflect the new 

height values. 

Because deformation and elevation data are stored in textures, 

the deformation process involves the alteration of these textures 

in GPU memory. This is achieved by making use of render-to-

texture functionality provided by OpenGL’s Framebuffer 

Objects (FBOs), which allows one to bind textures as render 

targets. However, FBO operations cannot write to a bound 

texture, therefore a copy of the texture must first be made and 

bound to a texture unit in order for the current height-map state 

to be read and altered. The deformation process, which is 

essentially a rendering step, is performed by OpenGL GLSL 

shader programs. The general deformation shader, which 

applies an arbitrary stamp, simply reads from both the current 

tile and stamp textures and adds their height values according to 

the given intensity, scale and rotation. The final height value is 

rendered as a texel to the new tile texture. Functional stamps 

each have a specific fragment shader that performs the terrain 

deformation based on arbitrary parameters. The Gaussian 

stamp, for example, determines the extrusion intensity from the 

gaussian function centred on the clicked location on the terrain. 

Dynamic stamps, which may change their effect over time, are 

merely advanced functional stamps that require an independent 

texture to store the stamp’s current state. A shockwave effect 

can thus be created where the current wave state is stored as the 

stamp but is updated every frame using a shader that 

implements the Wave Equation, before being applied to the 

terrain. 

After a deformation or a series of repeated deformations, the 

coarse-map data is streamed back asynchronously to the CPU 

for use in the collision detection system. The texture data is read 

into an OpenGL Pixel Buffer Object (PBOs) which hands 

control over to the DMA for transfer of the data into system 

memory. This allows both the CPU and GPU to continue 

processing during the transfer. 

3.4.2 Partial derivative map generation 
The primary benefit of partial derivative normal maps [24] is 

that they only require the storage of two components. The 

definition of a surface-normal states that it is the cross-product 

of a surface’s tangent and binormal vectors which can be 

derived from the partial derivatives. The finite difference 

approximations for derivatives are used to calculate the two first 

order partial derivatives stored in the R and G channels.  

PD-maps are created and recalculated at a number of stages 

throughout the system's lifetime. Initially, when the coarse-map 

is generated or loaded from file, the corresponding PD-map is 

calculated. PD-maps for detail-maps are created when the 

detail-maps are loaded from the cache, and discarded again 

when the maps are cached to disk. This is to reduce bus transfer 

times and time spent writing to disk, because the recalculation 

is significantly faster and thus worth the trade-off. Finally, PD-

map recalculations occur after any deformation of a height-map 

in order to maintain consistency between topography and its 

surface shading. 

3.5 Representation 
There are two modes for displaying the deformation data on the 

terrain - the first for coarse-detail and second for high-detail. 

Two sets of shaders are thus used during the rendering process, 

each for different regions of the clipmap. The innermost region 

makes use of one of the two different high-detail methods, 

either Geometry Tessellation or Parallax Mapping. The outer 

regions all use a standard shader that only represents coarse-

detail. The coarse-map is sampled by the vertex shader during 

displacement of the clipmap vertices. Standard phong lighting is 

calculated in the fragment shader which completes the process. 

For the innermost region things work slightly differently. First 

displacement mapping handles the coarse deformations and 

then either the Geometry Tessellation or Parallax Mapping 

shaders take over. These change the standard geometry and 

fragment shaders to enable each of the different techniques. 

More information for each of these methods is provided in the 

next two sections. 

3.5.1 Geometry tessellation 
 In order to accurately represent the fine terrain detail created by 

deformation, a geometry tessellation technique was 

implemented. The method makes use of geometry shaders 

adhering to the SM3.0 standard. Since rendering performance 

degrades linearly with respect to the number of triangles [25], it 

is essential that our tesselator produces the smallest reasonable 

set of new primitives. We thus utilize an adaptive tessellation 

scheme, where vertices are only marked for tessellation if there 

is deformation data at that location in the detail-map. 

Each triangle is processed by the geometry shader. If the 

triangle is within a certain distance from the camera it may be 

tessellated according to some refinement pattern. Refinement 

patterns define exactly how a triangle will be tessellated into 

sub-triangles. Each pattern is defined as a set of barycentric 

coordinates; the choice of pattern is based on the states of the 

tessellation-property of all three vertices. Each vertex can either 

be set to tessellate (1) or not (0). There are thus 23 = 8 possible 

combinations. The chosen pattern is based on a pattern index ρ 

calculated from the tessellation states ti of the three vertices v0, 

v1 and v2 using the following bitwise expression. 

     (    )  (    ) 

This expression produces an integer in the range     ).       

represents the case when all the sides of the triangle require 



tessellation.           represent the cases when only one side 

requires tessellation. Finally,             results in no 

tessellation. Once tessellated, new vertices can then sample the 

relevant detail maps for the elevation values. The new 

composite normal must be calculated using the coarse-map and 

detail-map’s normals. This simply involves summation of the 

two sets of partial derivatives. Having the different patterns is 

essential to creating a smooth merging between tessellated and 

non-tessellated regions, removing the occurrence of T- 

junctions which would ruin the visual quality. 

Figure 6 shows how a section of terrain mesh may be tessellated 

given an area of partially deformed heights. A wireframe 

rendering of adaptive geometry tessellation is shown in Figure 

7. 

3.5.2 Parallax mapping 
Parallax Mapping is a texture-based alternative to Geometry 

Tessellation for the representation of high-detail regions of a 

model. It does not rely on the generation of new geometry. 

Since parallax mapping only requires code to be inserted in the 

fragment shader and does not need the geometry shader – this 

method will also work on older generations of hardware. 

Because this technique does not create additional geometry, the 

performance cost is significantly reduced. The number of 

displacements that can be applied depends on the resolution of 

the textures being used in the parallax function. 

Iterative parallax mapping, with offset limiting, was chosen 

after extensive testing showed that it produced the best results. 

Three key variables are used to control this method of parallax 

mapping: parallax bias, scale and number of iterations. The 

following values were chosen to be final for the system; bias of 

-0.004, 0.004 for scale and an iteration count of 4. 

Figure 8 shows an example of parallax mapping to produce 

several deformations. An overlay of the same image in 

wireframe mode is added to illustrate that no physical geometry 

has been added or displaced. The deformations produced are 

purely illusionary [15]. 

We show in our results that Parallax Mapping significantly out-

performs Geometry Tessellation, although the visual quality is 

not identical. The quality is, however, high enough to be an 

acceptable means of representing high-detail deformations on 

terrain. This trade off in quality is balanced by the performance 

gain. 

3.6 Caching System 
The caching system is responsible for managing the detail-

maps. It is required because all of the detail-maps cannot be 

loaded into GPU memory at the same time. The coarse-map is 

divided up into a grid with each cell representing a high-detail 

texture or tile. The number of tiles used to span the coarse-map 

depends on the resolution of the high-detail textures. This 

resolution is chosen so as to achieve minimal noticeable 

aliasing in both the tessellation and texture-based approaches. 

For our prototype, the terrain consists of a single coarse-map of 

dimension          . The underlying clipmap mesh has a 

resolution of          at the finest level. The finest level is 

refined by a factor of    
 

 
 yielding a resolution of     

           . Texel distance for the detail-maps is thus δD 

and the number of tiles n can then be calculated using the 

dimensions of the detail-map textures,         . This 

calculation is shown below which yields    . 

  
    

     
 

 
  

   
 

 
    

(   )      
 

   

Figure 6: Example of adaptive tessellation 

Figure 7: Wireframe of Geometry Tessellation 

Figure 8: Wireframe overlay of Parallax Mapping 



A total of          tiles are thus required to cover a small 

coarse-map. Storing these on the GPU would consume 144 MiB 

of VRAM, excluding the normal-map textures which would 

require an additional 200% of memory resulting in 432 MiB. 

This is an unacceptable amount of memory for the terrain 

system to consume alone. In addition to this, computer games 

would need to store the terrain mesh, game models and other 

textures. This also puts a very low upper bound on the 

supported size of terrains. This is the main reason why an 

efficient caching system was developed. 

 

Figure 10: Caching boundaries of a tile 

The caching system works on a region system, whereby the tiles 

are divided up into nine regions of three different types - these 

are shown in Figure 10. When the player crosses one of the 

boundary lines, the caching system changes state. Boolean 

values are used to store the final caching state. When the state 

changes an unload command is sent to all the tiles required by 

the previous state and then a load command is performed for the 

current state. This results in a list of tiles that were previously 

loaded that now need to be unloaded, and tiles that were not 

loaded that are now required to be present. These loading and 

unloading requests are handled by the caching PBO’s, which 

stream the data in and out asynchronously, and are handled by a 

separate thread. Figure 9 shows the three different states the 

caching system can be in. The lightly shaded blocks represent 

tiles that are currently loaded in to GPU memory; the dark 

shaded blocks are loaded and made active and white blocks are 

currently unloaded. 

As shown in Figure 9, state 0 has nine textures loaded but has 

only one active. State 1 has six textures loaded and two marked 

as active. State 2 has four loaded and active textures. It is 

noteworthy that the tile that the user is currently residing in is 

always loaded and active. Under this system, there can at most 

be nine textures loaded in to GPU memory; this gives a total of 

108 MiB, including PD-maps, irrespective of the grid size. 

Initially, if no existing cache is to be loaded from disk, all tiles 

share a texture storing zero deformation data. When 

transitioning between regions, no loading and unloading is 

necessary. This saves processing time that would have been 

spent wastefully. When a deformation operation is performed 

on a tile using the zero texture, a new texture is created for the 

tile as a copy of the zero texture and the deformation is then 

performed. As an additional optimization, textures are not 

cached to disk unless they have been modified since they were 

loaded. To save time spent on waiting for hard-disk requests 

and bus transfers, normal maps are not cached but are rather 

recalculated each time a texture is loaded. 

4. RESULTS 
Our testing setup for the system comprised two differently 

configured desktop computers. The first system used has a Core 

i7 950 CPU, 6GB DDR3 RAM and a 7200RPM Hard Drive. 

Three different NVIDIA GPUs were tested in this computer: 

GTX 295 using only one GPU core, GTX 480 and a GTX 580. 

The secondary system forms the bottom of the range for the 

tests as it uses lower performing hardware. It has a Core 2 Duo 

P8600 CPU, 4GB RAM and a 5400RPM Hard Drive, and a 

NVIDIA 9600GT GPU. Tests were conducted on the four 

different computer configurations and the results are discussed 

below. 

Four different tests were conducted to test the various aspects of 

the system. The first test measures the render time and an 

average FPS. The second test shows how the system performs 

at different screen resolutions. The third compares how various 

deformation stamp sizes affect the total time to produce a 

deformation in the system. Finally, some benchmarks for the 

caching system are presented. 

The following system parameters were chosen for the testing 

process. A screen size of 1600x900 was used for all the tests 

except when testing different screen resolutions in test 2. V-

Sync and Anti-Aliasing were both disabled. The standard 

coarse-detail mode was used except when testing the high-detail 

method’s performance in test 1. In tests 1 and 2, the player 

walks forward through the world for a total of 60 seconds, this 

covers ⅓ of the terrain, while making measurements constantly. 

The overall average for this period is presented in the results. 

The frame rates are presented in graphs that use a logarithmic 

scale; this was chosen due to the substantial differences 

between the various devices. It is shown on the newer hardware 

that there is a large amount of unused performance. This would 

allow for other systems to be run as part of game engine. 

Figure 9: Comparison of caching states 



Test 1 compares the performance of the coarse-detail only 

method with the two different high-detail methods, all using the 

four different system configurations. The total time taken to 

perform a single render step is recorded in ms and presented in 

Table 1. 

Graph 1 plots the average frame rate against the different GPU 

types for each of the rendering techniques. From the results it is 

clear that the performance is increased when using newer 

GPUs, it is also noteworthy that there is a much larger increase 

between GPU architecture generations which explains the large 

increase from the 9600GT to the GTX295 and from the 

GTX295 to the GTX480. A smaller increase is noted between 

the GTX480 and the GTX580 as they are both based on the 

Fermi architecture. Based on the results in Graph 1 it is seen 

that on the lowest level of hardware, the 9600GT, the only 

method that fails to achieve real-time is the method based on 

geometry tessellation, on all other devices and methods the 

system operates with more than 30 frames per second. This 

shows that geometry tessellation is not suitable for use on lower 

end GPUs. 

Table 1: Time (ms) to render scene 

 9600GT GTX295 GTX480 GTX580 

Coarse 15.425 2.666 1.164 0.976 

Parallax 23.466 3.036 1.364 1.149 

Tessellation 148.447 12.576 2.934 2.456 

 

 

Graph 1: FPS with using different rendering techniques 

Test 2 presents the render time in ms of the system when using 

the coarse-detail only method, with varying screen resolutions. 

This shows how the system scales when the total number of 

pixels to process is increased. As seen in Table 2, the time to 

render the scene increases as the screen size is increased. This is 

shown as a linear relationship in Graph 2 which plots the 

average frame rate against the different screen resolutions. The 

performance decreases at a linear rate as the number of pixels 

that need to be rendered increase. This is more noticeable on the 

newer GPUs, GTX480 and GTX580; this is because of the high 

magnitude of the frame rate for these devices when comparing 

on a logarithmic scale graph. 

Table 2: Time (ms) to render based on different screen sizes 

 9600GT GTX295 GTX480 GTX580 

1280 x 720 12.626 2.399 1.023 0.863 

1440 x 810 13.898 2.509 1.088 0.913 

1600 x 900 15.425 2.666 1.164 0.976 

1760 x 990 16.759 2.823 1.239 1.041 

1920 x 1080 17.536 3.002 1.313 1.113 

 

Graph 2: FPS using different screen sizes 

In test 3 the deformation component of the system is tested. We 

tested each of the four configurations against an increasing 

stamp size when applying a deformation in the centre of a tile 

and then also when deforming a corner which requires the three 

neighbouring tiles to also be deformed. The total times to 

complete a deformation on both a single tile and on a corner 

which affects the three neighbouring tiles is recorded in ms and 

presented in Graph 3. A deformation includes the adjustment of 

the height-map as well as the recalculation of the associated 

PD-map. It is noted that the time to perform a corner 

deformation which involves 4 tiles is less than 4 times the cost 

of performing a single tile. This is attributed to an optimised 

solution which removes redundant state change operations and 

employs asynchronous memory transfers to save computational 

time. 

 

Graph 3: Deformation time with varying stamp size 

There was no easy way to measure the performance of the 

caching system and as such no results can be displayed. It was 

noted during experimentation that no lag or stall was 

experienced when moving through the world as a result of 

caching. 

More extensive testing could have been conducted (measure 

GPU utilisation, memory transfer speeds, etc) but this testing 

would not change the overall observation that the deformation 

framework is extremely efficient and imposes a marginal 

overhead per rendered frame. 

5. CONCLUSION & FUTURE WORK 
Terrain forms an important part of many computer game 

environments. Although game worlds support some dynamic 

modification, the world terrain itself tends to remain static. To 

address this problem, we have developed a tile-based terrain 

deformation system which is efficient and supports persistent 

deformations. Extensive use of GPU shaders and texture storage 

ensures that our framework is able to deliver high frame rates 



for any number of deformation operations on a given terrain 

tile. Persistence is achieved by means of texture data stores and 

a pre-emptive loading scheme which ensures that the 

appropriate deformation information is always resident when 

required by the renderer. Our framework supports two 

deformation schemes: one based on parallax mapping, and 

another on tessellation. The minimum frame rate of 30 was 

obtained for all but the geometry tessellation method on the 

minimum hardware system. Based on the tests it was clear that 

the parallax mapping method produces much better results than 

geometry tessellation. Although the texture stores do require 

additional resources, the tiling scheme limits the number of 

textures which need to be resident on the graphics card at any 

one time. The overhead of maintaining the deformation 

infrastructure is thus minimal and will not consume an 

excessive amount of GPU resources. 

There are a number of ways in which our core deformation 

framework could be improved in the future: The ability to have 

more than one coarse-map could allow a semi-infinite world in 

which new maps get created as they are required. This means 

that coarse-maps get stored with their absolute position. A limit 

could easily be imposed which starts to wrap the maps after a 

certain amount. 

New graphics cards support Shader Model 5.0, which has better 

support for tessellation as part of the rendering pipeline. 

Additional optimizations are certainly possible.  

In locations such as the horizon and hills or contours, the piece-

wise linear edges can be easily seen. In order to reduce this 

visual artefact, smoothing should be done on contours by use of 

a fast technique such as Phong Tessellation [7]. 

Additional optimizations could include the use of compressed 

texture formats and geometry orderings that are more vertex-

cache-friendly. Further optimisations of the code to increase the 

performance, this can allow for the more advanced systems to 

be implemented. Finally, a better cache management strategy, 

such as that used in Virtual Texturing [26], could be 

implemented. 

Implementing the system in a complete game engine would 

allow us to evaluate the system more thoroughly. Multiple 

players could be present in the game where each could place 

mines around the environment and trigger them remotely. This 

would test the true performance of the system with multiple 

explosions causing deformations across the map. 

The detail could further be improved by a hybrid approach 

whereby vertices in the immediate vicinity of the player are 

tessellated to create high-detail. A new level between the high 

and coarse-detail could be introduced that uses parallax 

mapping for vertices slightly further out before the coarse-detail 

level handles the rest. 
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