
A System for Real-Time Deformable Terrain
Justin Crause

University of Cape Town

jcrause@cs.uct.ac.za

Andrew Flower
University of Cape Town

aflower@cs.uct.ac.za

Patrick Marais
University of Cape Town

patrick@cs.uct.ac.za

ABSTRACT
Terrain constitutes an important part of many virtual

environments. In computer games or simulations it is often

useful to allow the user to modify the terrain since this can help

to foster immersion. Unfortunately, real-time deformation

schemes can be expensive and most game engines simply

substitute proxy geometry or use texturing to create the illusion

of deformation.

We present a new terrain deformation framework which is able

to produce persistent, real-time deformation by utilising the

capabilities of current generation GPUs. Our method utilises

texture storage, a terrain level-of-detail scheme and a tile-based

terrain representation to achieve high frame rates. To

accommodate a range of hardware, we provide deformation

schemes for hardware with and without geometry tessellation

units. Deformation using the fragment shader (no tessellation) is

significantly faster than the geometry shader (tessellation)

approach, although this does come at the cost of some high

resolution detail.

Our tests show that both deformation schemes consume a

comparatively small proportion of the GPU per frame budget

and can thus be integrated into more complex virtual

environments.

Categories and Subject Descriptors

I.3.6 [Computer Graphics]: Methodology and Techniques -

Graphics data structures and data types

 http://www.acm.org/class/1998/

General Terms

Algorithms, Performance, Design.

Keywords

Terrain Deformation, OpenGL, Geometry Tessellation, Parallax

Mapping, Caching

1. INTRODUCTION
Modern computer games exhibit a high level of realism,

utilising detailed virtual environments which often respond to

player interaction. Some interactions, such as opening a door,

can be easily scripted. Other interactions – triggering a

landmine, for example - result in more fundamental changes to

the world geometry. In the latter case, the world designers often

provide replacement geometry, such as a crater, which can be

swapped in based on the interaction type. While these methods

may give the illusion of a responsive world, more complex

interactions and responses are not generally supported. For

example, if a tank rolls across terrain, the game engine will

usually texture a track pattern onto the ground mesh. Close

examination will quickly reveal this, which causes a break in

user immersion.

Terrain forms a major component of many game worlds and

realistic physical interaction with terrain helps to foster user

immersion. Such interaction can be expensive to compute,

however, and most game engines use low quality alternatives

such as texturing or pre-computed proxy geometry.

In this paper we present a framework to manage the efficient,

real-time deformation of terrain on a range of graphics

hardware. In this context, deformation refers to the warping of

the terrain geometry in response to forces arising in the game

world, such as explosions or passing vehicles. In order to

accomplish this, we developed a tile-based terrain caching

scheme and combined this with extensive use of the

programmable Graphical Processing Unit (GPU), which exists

on most modern computers. The core innovation is the efficient

use of GPU textures to store deformation data – this ensures

that all deformations are persistent and that the system response

does not degrade when large numbers of deformations are

applied. To ensure efficient rendering of geometry, a level-of-

detail scheme, geometry clipmaps [1], is used. To cater for both

old and new GPUs, we developed two deformation schemes:

one based on fragment shaders, and another based on geometry

shader tessellation. Current GPUs can support both deformation

modes.

The paper is organized as follows: Section 2 discusses

background and related work. Our system is presented in

Section 3 and Results discussed in Section 4. We conclude in

Section 5 and then provide some possible extensions for future

work.

2. BACKGROUND AND RELATED

WORK
Previous work on deformable terrain systems is not readily

available in the public domain. Unfortunately computer game

engines use proprietary techniques which are not generally

published. Consequently, much information about games or

systems that may incorporate such techniques is speculative and

based on observation of the systems. Despite an extensive

literature search, no specific literature was found pertaining to

the kind of caching scheme required for our system. The

framework presented in this research was designed specifically

to meet the requirements of a deformable terrain system.

Our framework requires an efficient, easily dynamic mesh

representation to ensure high frame rates. A number of

techniques exist [2] for representing a terrain mesh. Common

algorithms include ROAM [3], Geometrical Mip-mapping [4]

and Geometrical Clipmaps [5]. These algorithms usually require

the terrain mesh to be updated regularly on the CPU and

streamed to the GPU. Our system makes use of Geometrical

Clipmapping, which focuses on a Level-of-Detail nested mesh

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

SAICSIT '11, October 3–5, 2011, Cape Town, South Africa.

mailto:jcrause@cs.uct.ac.za
mailto:aflower@cs.uct.ac.za
mailto:patrick@cs.uct.ac.za
http://www.acm.org/class/1998/

scheme centred on the camera, since it maps readily to a GPU

implementation.

Triangle Mesh Tessellation takes an existing triangle mesh and

sub-divides each triangle to create additional triangles. The aim

of this process is to produce a more detailed model from a

coarse mesh. If tessellation is done adaptively, such that areas

without elevation aren’t tessellated, displacement mapping can

be applied to apply fine detail to the mesh in an efficient

manner [6].

Many tessellation schemes exist. Some evaluate tensor-product

or B-spline surfaces, but these are expensive [8]. Subdivision

surfaces, generated by algorithms such as that of Catmull and

Clarke [9], are a commonly used approximation to these

surfaces. Currently two major schemes exist for computing

subdivision on GPUs [10]. One involves multiple passes with

intermediate results being stored in graphics memory whilst the

other performs direct evaluation in a single pass but requires

texture lookup tables for tessellation patterns. Accurate

subdivision surface generation is not essential to the goals of

this problem. Instead basic refinement schemes [11], defined in

barycentric coordinates, are used to tessellate the deformed

terrain in this system. An alternative to using tessellation is to

use texture mapping methods to provide illusionary detail.

Texture mapping is a well-known and widely used method to

enhance the realism of computer generated content [12]. There

are a variety of texture-based techniques that would be suitable

for our system. These techniques include normal mapping [12],

relief mapping [13], [14] and parallax mapping [13], [15].

These are all examples of bump mapping techniques [16] which

are used to improve realism of computer generated surfaces.

Bump mapping can use simplified geometry and add back detail

using data stored in textures. However, this may still produce

unrealistic looking objects. This can be solved by actually

displacing geometry through displacement mapping which was

introduced by Cook [18]. Displacement mapping actually

moves vertices on the objects surface to add real detail [19],

[20].

We implemented a number of software prototypes to compare

the different techniques and based on these it was decided that

parallax mapping was the most suitable method, as it provided

the most visually pleasing results. Parallax mapping can be

extended to include offset limiting and also implemented with

an iterative loop, both of which better the final result. The

interested reader is referred to [13], [21], [22] for more details.

3. REAL-TIME DEFORMATION

FRAMEWORK
Our system combines several established techniques to achieve

real-time performance. The core idea is to use additional

textures to store deformations and to re-synthesize the relevant

deformations on demand as the viewport moves across the

terrain.

As identified earlier, there are two main fields that would

benefit from a real-time deformable terrain, namely computer

games and 3D world modelling. A games engine utilising our

framework would be able to fully support destructible terrain.

For example, shooting a weapon or tossing a grenade will result

in a plausible, programmatically controllable deformation of the

target area. Even the most advanced game engines, such as the

engine to be used in the upcoming Battlefield 3 [23] game, still

lack fully deformable terrain.

3D model designers who create landscapes for movies could

benefit from a system which allows for real-time creation. The

biggest challenge when creating landscapes is that they need to

be rendered before they can be viewed. Our system allows for

changes to be seen in real-time as they are applied. The system

would, of course, need to be slightly modified to improve

control methods for deformation application, by adding brushes

and erosion tools, for example. Figure 1 shows the kind of

terrain that can be created using the system.

Figure 1: Sample created landscape

Before we developed our final framework, a number of design

constraints had to be considered since we wished our system to

run on a wide class of modern GPU hardware.

3.1 System Constraints
In order to accommodate a broad range of consumer graphics

hardware, our algorithms targeted the NVIDIA 9xxx series of

GPUs as our baseline. These devices were the first generation

that supported OpenGL 3.x and Geometry Shaders, which are

minimal requirements for our framework.

To ensure smooth, real-time performance, we need to ensure

that a minimum frame rate of at least 30 FPS is achieved. Given

that the deformation system will have to work in concert with

several other rendering phases, we arbitrarily set our ideal frame

rate as 120 FPS, 4 times the minimum frame rate.

Any deformations that are applied to the terrain need to persist.

This requirement motivated the use of the caching system

explained in section 3.6. The caching system allows for

multiple high-detail maps to cover a single coarse-detail map by

swapping map data in when required. Multiple coarse-maps

would be possible but in order to limit scope only a single map

was utilised in the system prototype.

The system also needs to be free of visible artefacts such as

holes in the ground (cracks) and level-of-detail jumps (popping)

as this it would break immersion.

3.2 Deformation Frame Work
Based on our analysis, we identified the following major

components shown in Figure 2:

1. Caching System: The need for a caching system arose

when planning the system and realising that multiple

texture maps are needed. Both the coarse and high-detail

deformation maps have accompanying partial derivative

maps; together these require large amounts of GPU

memory. The caching system solves this by determining

what texture data needs to be loaded onto the GPU at any

given time. Based on the system constraints the caching

system only handles high-detail maps but could easily be

extended to handle coarse-detail maps. The caching system

is discussed in section 3.6.

2. Deformation System: The deformation system is

responsible for creating the deformations on the terrain.

There are two levels of deformation: coarse and high-

detail. The deformation system is also responsible for the

generation of partial derivative maps. Common methods

for terrain deformation use proxy geometry to simulate the

effects on terrain. These do not displace terrain accurately

and are often pre-computed, thus detracting from the

overall realism. However, using proxy geometry is a

significant improvement over not applying any form of

deformation or simply using a new texture to represent an

explosion effect. Details for the deformation system are

discussed in section 3.4.

3. Geometry Clipmap: Because terrain data further away is

harder to see, highly detailed geometry at further distances

is not needed. This means using a uniform grid mesh is

unsuitable as more detail is needed closer to the camera

and less further away. The geometry clipmap was chosen

to represent the terrain because on each successive level of

the clipmap, the size of the cell doubles in size. Our

implementation of the clipmap is covered in section 3.3.3.

4. Texture-maps: Textures are used to store the deformation

and normal map data. Deformations are stored in the form

of height-maps and normals in partial derivative maps.

Storing all the data as textures means it can be easily

accessed in the shader files. They can also be updated in

the shaders to allow for quick deformation, as only small

regions are modified and then immediately available for

rendering. This removes the heavy cost of transferring the

data back and forth between CPU and GPU. Height and

partial derivative maps are discussed in sections 3.3.1 and

3.3.2.

5. Representation: There are two levels of detail - one

representing coarse-detail and one representing high

quality deformations. The coarse-detail representation

encapsulates large scale deformations, while the high-

detail representation is used for small, high resolution

deformations. A split multi-resolution representation is

sensible since high-detail deformations, such as footprints,

will only be visible relatively close to the camera. Two

different approaches to rendering the high-detail were

developed: one that creates additional geometry and one

that relies on texture "tricks" to give the illusion of detail.

All the deformation data is stored in texture files as height-

map data. Each of these different methods is explained in

section 3.5.

3.3 Data Structures
The primary data structure employed by our system is a height-

map which stores elevation data in a single channel of a texture.

Because deformations must persist, the textures which store the

data need to be saved and loaded when needed. The caching

system manages this process and is discussed in section 3.6.

Another important data structure used in the system is the

partial derivative (pd) map. Both the height and pd-maps are

stored on the GPU for use in the shaders and to provide fast

access to their data. Vertex Buffer Objects (VBOs) are used to

store the geometry for the clipmap on the GPU - see below.

3.3.1 Height-map
Terrain elevation data is stored in the form of a height-map

image textures on the GPU. These textures consist of a single

16-bit channel that allows for 65536 different values of

elevation discretisation. This allows for high mountains etc,

whilst still retaining adequate detail across a wide range of

height values. Height-maps are a very common and inexpensive

way to represent a 2.5 dimension mesh. Two types of height-

maps are used in our system: coarse-maps and detail-maps. The

coarse-map we use is pixels and represents an

area of based on a scale of per texel.

The second set of height-maps (detail-maps) are used to

represent finer detail on the terrain. The set of detail-maps is

created to tile the area covered by a coarse-map. This allows for

distant detail-maps to be omitted from the rendering process as

they are too far away to be noticed. The process of caching

detail-maps is covered in section 3.6. Detail-maps were chosen

as 2048 x 2048 textures with each texel representing 0.03m.

3.3.2 Partial derivative map
Lighting is an essential part of surface rendering in modern

computer graphics. Lighting uses reflectance functions that

operate on surface normals. The most popular way to store

surface normals is through the use of normal-maps. Storing

normal-maps for the large coarse-map and for each of the

detail-maps would consume a considerable amount of GPU

memory. For this reason an alternative storage technique was

used. Partial Derivative (PD) Normal Maps [24] are essentially

the same as regular normal-maps, except that the partial

derivatives are instead stored for x and z rather than all three

components having the y component calculated at render time.

This method saves on a third of the memory storage at the small

cost of reconstruction as well as reducing texture-fetch latency.

PD-maps also benefit bump-mapping, as it removes the need for

tangent-space conversions because the partial derivatives can

simply be added to form the composite normal.

3.3.3 Clipmap
The layout and formation of the set of clipmaps is the same as

previous implementations [1]. In order to reduce memory used,

the components that exist in each clipmap level are only stored

Figure 2: Main components of a deformation system

once in VBOs. During render time, they are then scaled and

translated into the correct location. In addition to the vertex

VBOs, there are corresponding VBOs for texture coordinates

and indices. The vertex indexing is ordered in the form of

triangle strips to reduce the index buffer size and to make better

use of the post-transform vertex cache. While traversing the

environment, terrain detail near the edges of each clipmap

displays sudden changes as the level-of-detail in a region

changes.

Figure 5: Clipmap with 3-levels, divided into quads:

A sample clipmap is shown in Figure 5. It should be noted that

the innermost level is not the centre of the clipmap. However,

this does not affect the position of the camera for large size

clipmap sizes. Each vertex stores its position information and an

associated texture coordinate, which is used to look up elevation

data in the shaders to deform the clipmap. The vertices of the

innermost level are spaced such that sampling adjacent texels

map to adjacent vertices. The clipmap and camera are not

translated through the world. Instead the texture coordinates are

shifted by the amount the camera gets moved by the user.

The sampling rate of the vertices provides sufficient detail for

the coarse deformations but lacks the resolution for high-detail.

This is where one of the two high-detail methods comes in and

adds the additional resolution to the innermost clipmap region.

3.4 Deformation System
An overview to the deformable terrain system is provided in

Figure 3 which shows the linking between the deformations and

rendering components. These two components share the same

set of textures which aids in performance and reduces the

memory overhead. The arrow shows the flow of information in

the system. The blocks with dashed outlines represent data

structures used as input.

A deformer object is created in the system and is responsible for

handling the various deformation tasks for both coarse and

high-detail, as well as the calculation of the PD-maps. The

deformer makes use of a Frame Buffer Object (FBO) which

allows for the deformation to be rendered directly to a texture

stored on the GPU. More information on deformations is

provided in Section 3.4.1.

On the rendering side of the system, the clipmap, which is

stored as a VBO is used as input to the various shaders. The

shaders used vary, depending on whether the Geometry

Tessellation or Parallax Mapping method is running. Both make

use of the clipmap VBO to represent the coarse-detail but utilise

the high-detail maps differently - Section 3.51.

3.4.1 Deformations
Deformations to the terrain are applied through the use of

stamps. We define three types of stamps. The first is a

functional stamp, which applies a specific mathematical

function to the area over which the stamp is applied. The second

stamp is based on a texture loaded at start-up. The texture is

stored as a height-map which is used to alter the surface of the

Figure 4: Examples of stamps in the system

Figure 3: Overview of deformation system

terrain. The last type of stamp is dynamic, meaning it varies

over time.

Figure 4 shows examples of the texture and functional stamps

available in the system. Each of the stamps is applied at a

specific location on the terrain, based on the location clicked by

the user on the terrain. Stamps can have other properties

associated with them, for instance they have an intensity value

which denotes how strong the deformation should be, and they

also have a scale which denotes the size of the area being

affected by the deformation. These parameters along with the

stamp’s ID are needed by the deformation engine to work out

where to place the new deformation. Deformations can occur on

either the coarse or high-detail maps, both of which use the

same functions to create the deformations, they just affect

different textures. The dynamic stamp cannot easily be

presented in images and as such we refer the reader to our

website for video files [27]. Due to limitations of the caching

system, deformations have a maximum distance at which they

can be applied. For the coarse-map, this distance is much larger

than in high-detail mode. We do this because a coarse-map

covers whereas a high-detail map only covers

approximately . As such only some maps will be

available in GPU memory, so a limit on how far away from the

camera deformations can be applied is enforced. One solution to

this would be to allow for an offline process where

deformations that fall on unavailable tiles are added to a queue

and this queue is processed in the background. However, this

was beyond the scope of this research.

When deformations occur on the edge of a texture, the

neighbouring tiles will also be affected. As such separate

deformations need to be applied to each texture, which is loaded

in turn. After each deformation has been applied, the

corresponding pd-map needs to be updated to reflect the new

height values.

Because deformation and elevation data are stored in textures,

the deformation process involves the alteration of these textures

in GPU memory. This is achieved by making use of render-to-

texture functionality provided by OpenGL’s Framebuffer

Objects (FBOs), which allows one to bind textures as render

targets. However, FBO operations cannot write to a bound

texture, therefore a copy of the texture must first be made and

bound to a texture unit in order for the current height-map state

to be read and altered. The deformation process, which is

essentially a rendering step, is performed by OpenGL GLSL

shader programs. The general deformation shader, which

applies an arbitrary stamp, simply reads from both the current

tile and stamp textures and adds their height values according to

the given intensity, scale and rotation. The final height value is

rendered as a texel to the new tile texture. Functional stamps

each have a specific fragment shader that performs the terrain

deformation based on arbitrary parameters. The Gaussian

stamp, for example, determines the extrusion intensity from the

gaussian function centred on the clicked location on the terrain.

Dynamic stamps, which may change their effect over time, are

merely advanced functional stamps that require an independent

texture to store the stamp’s current state. A shockwave effect

can thus be created where the current wave state is stored as the

stamp but is updated every frame using a shader that

implements the Wave Equation, before being applied to the

terrain.

After a deformation or a series of repeated deformations, the

coarse-map data is streamed back asynchronously to the CPU

for use in the collision detection system. The texture data is read

into an OpenGL Pixel Buffer Object (PBOs) which hands

control over to the DMA for transfer of the data into system

memory. This allows both the CPU and GPU to continue

processing during the transfer.

3.4.2 Partial derivative map generation
The primary benefit of partial derivative normal maps [24] is

that they only require the storage of two components. The

definition of a surface-normal states that it is the cross-product

of a surface’s tangent and binormal vectors which can be

derived from the partial derivatives. The finite difference

approximations for derivatives are used to calculate the two first

order partial derivatives stored in the R and G channels.

PD-maps are created and recalculated at a number of stages

throughout the system's lifetime. Initially, when the coarse-map

is generated or loaded from file, the corresponding PD-map is

calculated. PD-maps for detail-maps are created when the

detail-maps are loaded from the cache, and discarded again

when the maps are cached to disk. This is to reduce bus transfer

times and time spent writing to disk, because the recalculation

is significantly faster and thus worth the trade-off. Finally, PD-

map recalculations occur after any deformation of a height-map

in order to maintain consistency between topography and its

surface shading.

3.5 Representation
There are two modes for displaying the deformation data on the

terrain - the first for coarse-detail and second for high-detail.

Two sets of shaders are thus used during the rendering process,

each for different regions of the clipmap. The innermost region

makes use of one of the two different high-detail methods,

either Geometry Tessellation or Parallax Mapping. The outer

regions all use a standard shader that only represents coarse-

detail. The coarse-map is sampled by the vertex shader during

displacement of the clipmap vertices. Standard phong lighting is

calculated in the fragment shader which completes the process.

For the innermost region things work slightly differently. First

displacement mapping handles the coarse deformations and

then either the Geometry Tessellation or Parallax Mapping

shaders take over. These change the standard geometry and

fragment shaders to enable each of the different techniques.

More information for each of these methods is provided in the

next two sections.

3.5.1 Geometry tessellation
 In order to accurately represent the fine terrain detail created by

deformation, a geometry tessellation technique was

implemented. The method makes use of geometry shaders

adhering to the SM3.0 standard. Since rendering performance

degrades linearly with respect to the number of triangles [25], it

is essential that our tesselator produces the smallest reasonable

set of new primitives. We thus utilize an adaptive tessellation

scheme, where vertices are only marked for tessellation if there

is deformation data at that location in the detail-map.

Each triangle is processed by the geometry shader. If the

triangle is within a certain distance from the camera it may be

tessellated according to some refinement pattern. Refinement

patterns define exactly how a triangle will be tessellated into

sub-triangles. Each pattern is defined as a set of barycentric

coordinates; the choice of pattern is based on the states of the

tessellation-property of all three vertices. Each vertex can either

be set to tessellate (1) or not (0). There are thus 23 = 8 possible

combinations. The chosen pattern is based on a pattern index ρ

calculated from the tessellation states ti of the three vertices v0,

v1 and v2 using the following bitwise expression.

 () ()

This expression produces an integer in the range).

represents the case when all the sides of the triangle require

tessellation. represent the cases when only one side

requires tessellation. Finally, results in no

tessellation. Once tessellated, new vertices can then sample the

relevant detail maps for the elevation values. The new

composite normal must be calculated using the coarse-map and

detail-map’s normals. This simply involves summation of the

two sets of partial derivatives. Having the different patterns is

essential to creating a smooth merging between tessellated and

non-tessellated regions, removing the occurrence of T-

junctions which would ruin the visual quality.

Figure 6 shows how a section of terrain mesh may be tessellated

given an area of partially deformed heights. A wireframe

rendering of adaptive geometry tessellation is shown in Figure

7.

3.5.2 Parallax mapping
Parallax Mapping is a texture-based alternative to Geometry

Tessellation for the representation of high-detail regions of a

model. It does not rely on the generation of new geometry.

Since parallax mapping only requires code to be inserted in the

fragment shader and does not need the geometry shader – this

method will also work on older generations of hardware.

Because this technique does not create additional geometry, the

performance cost is significantly reduced. The number of

displacements that can be applied depends on the resolution of

the textures being used in the parallax function.

Iterative parallax mapping, with offset limiting, was chosen

after extensive testing showed that it produced the best results.

Three key variables are used to control this method of parallax

mapping: parallax bias, scale and number of iterations. The

following values were chosen to be final for the system; bias of

-0.004, 0.004 for scale and an iteration count of 4.

Figure 8 shows an example of parallax mapping to produce

several deformations. An overlay of the same image in

wireframe mode is added to illustrate that no physical geometry

has been added or displaced. The deformations produced are

purely illusionary [15].

We show in our results that Parallax Mapping significantly out-

performs Geometry Tessellation, although the visual quality is

not identical. The quality is, however, high enough to be an

acceptable means of representing high-detail deformations on

terrain. This trade off in quality is balanced by the performance

gain.

3.6 Caching System
The caching system is responsible for managing the detail-

maps. It is required because all of the detail-maps cannot be

loaded into GPU memory at the same time. The coarse-map is

divided up into a grid with each cell representing a high-detail

texture or tile. The number of tiles used to span the coarse-map

depends on the resolution of the high-detail textures. This

resolution is chosen so as to achieve minimal noticeable

aliasing in both the tessellation and texture-based approaches.

For our prototype, the terrain consists of a single coarse-map of

dimension . The underlying clipmap mesh has a

resolution of at the finest level. The finest level is

refined by a factor of

 yielding a resolution of

 . Texel distance for the detail-maps is thus δD

and the number of tiles n can then be calculated using the

dimensions of the detail-map textures, . This

calculation is shown below which yields .

()

Figure 6: Example of adaptive tessellation

Figure 7: Wireframe of Geometry Tessellation

Figure 8: Wireframe overlay of Parallax Mapping

A total of tiles are thus required to cover a small

coarse-map. Storing these on the GPU would consume 144 MiB

of VRAM, excluding the normal-map textures which would

require an additional 200% of memory resulting in 432 MiB.

This is an unacceptable amount of memory for the terrain

system to consume alone. In addition to this, computer games

would need to store the terrain mesh, game models and other

textures. This also puts a very low upper bound on the

supported size of terrains. This is the main reason why an

efficient caching system was developed.

Figure 10: Caching boundaries of a tile

The caching system works on a region system, whereby the tiles

are divided up into nine regions of three different types - these

are shown in Figure 10. When the player crosses one of the

boundary lines, the caching system changes state. Boolean

values are used to store the final caching state. When the state

changes an unload command is sent to all the tiles required by

the previous state and then a load command is performed for the

current state. This results in a list of tiles that were previously

loaded that now need to be unloaded, and tiles that were not

loaded that are now required to be present. These loading and

unloading requests are handled by the caching PBO’s, which

stream the data in and out asynchronously, and are handled by a

separate thread. Figure 9 shows the three different states the

caching system can be in. The lightly shaded blocks represent

tiles that are currently loaded in to GPU memory; the dark

shaded blocks are loaded and made active and white blocks are

currently unloaded.

As shown in Figure 9, state 0 has nine textures loaded but has

only one active. State 1 has six textures loaded and two marked

as active. State 2 has four loaded and active textures. It is

noteworthy that the tile that the user is currently residing in is

always loaded and active. Under this system, there can at most

be nine textures loaded in to GPU memory; this gives a total of

108 MiB, including PD-maps, irrespective of the grid size.

Initially, if no existing cache is to be loaded from disk, all tiles

share a texture storing zero deformation data. When

transitioning between regions, no loading and unloading is

necessary. This saves processing time that would have been

spent wastefully. When a deformation operation is performed

on a tile using the zero texture, a new texture is created for the

tile as a copy of the zero texture and the deformation is then

performed. As an additional optimization, textures are not

cached to disk unless they have been modified since they were

loaded. To save time spent on waiting for hard-disk requests

and bus transfers, normal maps are not cached but are rather

recalculated each time a texture is loaded.

4. RESULTS
Our testing setup for the system comprised two differently

configured desktop computers. The first system used has a Core

i7 950 CPU, 6GB DDR3 RAM and a 7200RPM Hard Drive.

Three different NVIDIA GPUs were tested in this computer:

GTX 295 using only one GPU core, GTX 480 and a GTX 580.

The secondary system forms the bottom of the range for the

tests as it uses lower performing hardware. It has a Core 2 Duo

P8600 CPU, 4GB RAM and a 5400RPM Hard Drive, and a

NVIDIA 9600GT GPU. Tests were conducted on the four

different computer configurations and the results are discussed

below.

Four different tests were conducted to test the various aspects of

the system. The first test measures the render time and an

average FPS. The second test shows how the system performs

at different screen resolutions. The third compares how various

deformation stamp sizes affect the total time to produce a

deformation in the system. Finally, some benchmarks for the

caching system are presented.

The following system parameters were chosen for the testing

process. A screen size of 1600x900 was used for all the tests

except when testing different screen resolutions in test 2. V-

Sync and Anti-Aliasing were both disabled. The standard

coarse-detail mode was used except when testing the high-detail

method’s performance in test 1. In tests 1 and 2, the player

walks forward through the world for a total of 60 seconds, this

covers ⅓ of the terrain, while making measurements constantly.

The overall average for this period is presented in the results.

The frame rates are presented in graphs that use a logarithmic

scale; this was chosen due to the substantial differences

between the various devices. It is shown on the newer hardware

that there is a large amount of unused performance. This would

allow for other systems to be run as part of game engine.

Figure 9: Comparison of caching states

Test 1 compares the performance of the coarse-detail only

method with the two different high-detail methods, all using the

four different system configurations. The total time taken to

perform a single render step is recorded in ms and presented in

Table 1.

Graph 1 plots the average frame rate against the different GPU

types for each of the rendering techniques. From the results it is

clear that the performance is increased when using newer

GPUs, it is also noteworthy that there is a much larger increase

between GPU architecture generations which explains the large

increase from the 9600GT to the GTX295 and from the

GTX295 to the GTX480. A smaller increase is noted between

the GTX480 and the GTX580 as they are both based on the

Fermi architecture. Based on the results in Graph 1 it is seen

that on the lowest level of hardware, the 9600GT, the only

method that fails to achieve real-time is the method based on

geometry tessellation, on all other devices and methods the

system operates with more than 30 frames per second. This

shows that geometry tessellation is not suitable for use on lower

end GPUs.

Table 1: Time (ms) to render scene

 9600GT GTX295 GTX480 GTX580

Coarse 15.425 2.666 1.164 0.976

Parallax 23.466 3.036 1.364 1.149

Tessellation 148.447 12.576 2.934 2.456

Graph 1: FPS with using different rendering techniques

Test 2 presents the render time in ms of the system when using

the coarse-detail only method, with varying screen resolutions.

This shows how the system scales when the total number of

pixels to process is increased. As seen in Table 2, the time to

render the scene increases as the screen size is increased. This is

shown as a linear relationship in Graph 2 which plots the

average frame rate against the different screen resolutions. The

performance decreases at a linear rate as the number of pixels

that need to be rendered increase. This is more noticeable on the

newer GPUs, GTX480 and GTX580; this is because of the high

magnitude of the frame rate for these devices when comparing

on a logarithmic scale graph.

Table 2: Time (ms) to render based on different screen sizes

 9600GT GTX295 GTX480 GTX580

1280 x 720 12.626 2.399 1.023 0.863

1440 x 810 13.898 2.509 1.088 0.913

1600 x 900 15.425 2.666 1.164 0.976

1760 x 990 16.759 2.823 1.239 1.041

1920 x 1080 17.536 3.002 1.313 1.113

Graph 2: FPS using different screen sizes

In test 3 the deformation component of the system is tested. We

tested each of the four configurations against an increasing

stamp size when applying a deformation in the centre of a tile

and then also when deforming a corner which requires the three

neighbouring tiles to also be deformed. The total times to

complete a deformation on both a single tile and on a corner

which affects the three neighbouring tiles is recorded in ms and

presented in Graph 3. A deformation includes the adjustment of

the height-map as well as the recalculation of the associated

PD-map. It is noted that the time to perform a corner

deformation which involves 4 tiles is less than 4 times the cost

of performing a single tile. This is attributed to an optimised

solution which removes redundant state change operations and

employs asynchronous memory transfers to save computational

time.

Graph 3: Deformation time with varying stamp size

There was no easy way to measure the performance of the

caching system and as such no results can be displayed. It was

noted during experimentation that no lag or stall was

experienced when moving through the world as a result of

caching.

More extensive testing could have been conducted (measure

GPU utilisation, memory transfer speeds, etc) but this testing

would not change the overall observation that the deformation

framework is extremely efficient and imposes a marginal

overhead per rendered frame.

5. CONCLUSION & FUTURE WORK
Terrain forms an important part of many computer game

environments. Although game worlds support some dynamic

modification, the world terrain itself tends to remain static. To

address this problem, we have developed a tile-based terrain

deformation system which is efficient and supports persistent

deformations. Extensive use of GPU shaders and texture storage

ensures that our framework is able to deliver high frame rates

for any number of deformation operations on a given terrain

tile. Persistence is achieved by means of texture data stores and

a pre-emptive loading scheme which ensures that the

appropriate deformation information is always resident when

required by the renderer. Our framework supports two

deformation schemes: one based on parallax mapping, and

another on tessellation. The minimum frame rate of 30 was

obtained for all but the geometry tessellation method on the

minimum hardware system. Based on the tests it was clear that

the parallax mapping method produces much better results than

geometry tessellation. Although the texture stores do require

additional resources, the tiling scheme limits the number of

textures which need to be resident on the graphics card at any

one time. The overhead of maintaining the deformation

infrastructure is thus minimal and will not consume an

excessive amount of GPU resources.

There are a number of ways in which our core deformation

framework could be improved in the future: The ability to have

more than one coarse-map could allow a semi-infinite world in

which new maps get created as they are required. This means

that coarse-maps get stored with their absolute position. A limit

could easily be imposed which starts to wrap the maps after a

certain amount.

New graphics cards support Shader Model 5.0, which has better

support for tessellation as part of the rendering pipeline.

Additional optimizations are certainly possible.

In locations such as the horizon and hills or contours, the piece-

wise linear edges can be easily seen. In order to reduce this

visual artefact, smoothing should be done on contours by use of

a fast technique such as Phong Tessellation [7].

Additional optimizations could include the use of compressed

texture formats and geometry orderings that are more vertex-

cache-friendly. Further optimisations of the code to increase the

performance, this can allow for the more advanced systems to

be implemented. Finally, a better cache management strategy,

such as that used in Virtual Texturing [26], could be

implemented.

Implementing the system in a complete game engine would

allow us to evaluate the system more thoroughly. Multiple

players could be present in the game where each could place

mines around the environment and trigger them remotely. This

would test the true performance of the system with multiple

explosions causing deformations across the map.

The detail could further be improved by a hybrid approach

whereby vertices in the immediate vicinity of the player are

tessellated to create high-detail. A new level between the high

and coarse-detail could be introduced that uses parallax

mapping for vertices slightly further out before the coarse-detail

level handles the rest.

6. REFERENCES
[1] Asirvatham, A. and Hoppe, H. 2005. Terrain rendering

using GPU-based geometry clipmaps. In GPU Gems 2,

chapter 2. Addison-Wesley

[2] Barton, R. 2010. Modern Algorithms for Real-Time

Terrain Visualization on Commodity Hardware.

http://geoinformatics.fsv.cvut.cz/gwiki/Modern_Algorithm

s_for_Real-

Time_Terrain_Visualization_on_Commodity_Hardware

[3] Hwa, L. M., Duchaineau, M. A. and Joy, K. I. 2005. Real-

time optimal adaptation for planetary geometry and

texture: 4-8 tile hierarchies. IEEE Transactions on

Visualization and Computer Graphics. Vol. 11. No. 4.

355–368

[4] de Boer, W. H. 2000. Fast terrain rendering using

geometrical mipmapping.

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.

58.2737&rep=rep1&type=pdf

[5] Losasso, F. and Hoppe, H. 2004. Geometry clipmaps:

terrain rendering using nested regular grids. In

SIGGRAPH ’04: ACM SIGGRAPH 2004 Papers, pp 769–

776, New York, NY, USA

[6] Moule, K. and McCool, M. D. 2002. Efficient bounded

adaptive tessellation of displacement maps. In Graphics

Interface, pp 171–180

[7] Boubekeur, T. and Alexa, M. 2008. Phong Tessellation. In

ACM SIGGRAPH Asia 2008 papers (SIGGRAPH Asia

'08), John C. Hart (Ed.). ACM, New York, NY, USA,

Article 141

[8] Huang, X., Li, S., and Wang, G. 2007. A GPU based

interactive modeling approach to designing fine level

features. In GI ’07: Proceedings of Graphics Interface

2007, pp 305–311, New York, NY, USA

[9] Catmull, E. and Clark, J. 1978. Recursively generated B-

spline surfaces on arbitrary topological meshes, Computer-

Aided Design, Volume 10, Issue 6, Pages 350-355

[10] Kazakov, M. 2007. Catmull-clark subdivision for geometry

shaders. In AFRIGRAPH ’07: Proceedings of the 5th

international conference on Computer graphics, virtual

reality, visualisationand interaction in Africa, pp 77–84,

New York, NY, USA

[11] Patney, A, Ebeida, M. S., and Owens, J. D. 2009. Parallel

view-dependent tessellation of catmull-clark subdivision

surfaces. In HPG ’09: Proceedings of the Conference on

High Performance Graphics 2009, pp 99–108, New York,

NY, USA

[12] Tarini, M., Cignoni, P., Rocchini, C., and Scopigno, R.

2000. Real Time, Accurate, Multi-Featured Rendering of

Bump Mapped Surfaces. Computer Graphics Forum. 19, 3,

119-130

[13] Szirmay-Kalos, L., and Umenhoffer, T. 2008.

Displacement mapping on the GPU - State of the Art.

Computer Graphics Forum.

[14] Policarpo, F., Oliveira, M. M., and Comba, J. L. 2005.

Real-time relief mapping on arbitrary polygonal surfaces.

In Proceedings of the 2005 Symposium on interactive 3D

Graphics and Games (Washington, District of Columbia,

April 03 - 06, 2005). I3D '05. ACM, New York, NY, 155-

162

[15] Kaneko, T., Takahei, T., Inami, M., Kawakami, N.,

Yanagida, Y., Maeda, T., and Tachi, S. 2001. Detailed

shape representation with parallax mapping. In

Proceedings of the ICAT 2001, 205-208

[16] Blinn, J. F. 1978. Simulation of wrinkled surfaces.

SIGGRAPH Computer Graphics. 12, 3 (Aug. 1978), 286-

292

[17] Wang, J. and Sun, J. 2004. Real-time bump mapped texture

shading based-on hardware acceleration. In Proceedings

of the 2004 ACM SIGGRAPH international Conference on

Virtual Reality Continuum and Its Applications in industry

(Singapore, June 16 - 18, 2004). VRCAI '04. ACM, New

York, NY, 206-209

[18] Cook, R. L. 1984. Shade trees. In Proceedings of the 11th

Annual Conference on Computer Graphics and interactive

Techniques H. Christiansen, Ed. SIGGRAPH '84. ACM,

New York, NY, 223-231

[19] Hirche, J., Ehlert, A., Guthe, S., and Doggett, M. 2004.

Hardware accelerated perpixel displacement mapping. In

Proceedings of Graphics interface 2004 (London, Ontario,

Canada, May 17 - 19, 2004). ACM International

Conference Proceeding Series, vol. 62. Canadian Human-

http://geoinformatics.fsv.cvut.cz/gwiki/Modern_Algorithms_for_Real-Time_Terrain_Visualization_on_Commodity_Hardware
http://geoinformatics.fsv.cvut.cz/gwiki/Modern_Algorithms_for_Real-Time_Terrain_Visualization_on_Commodity_Hardware
http://geoinformatics.fsv.cvut.cz/gwiki/Modern_Algorithms_for_Real-Time_Terrain_Visualization_on_Commodity_Hardware
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.58.2737&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.58.2737&rep=rep1&type=pdf

Computer Communications Society, School of Computer

Science, University of Waterloo, Waterloo, Ontario, 153-

158

[20] Donnelly, W. 2005. Per-Pixel Displacement Mapping with

Distance Functions. In GPU Gems 2, M. Pharr, Ed.,

Addison-Wesley, pp. 123 -136

[21] Engel, W. 2004. Shaderx3: Advanced Rendering with

DirectX and OpenGL, (Shaderx Series). Charles River

Media, Inc., Rockland, MA, USA

[22] Welsh, T. 2004. Parallax Mapping with Offset Limiting: A

Per­Pixel Approximation of Uneven Surfaces.

https://www8.cs.umu.se/kurser/5DV051/VT09/lab/parallax

_mapping.pdf

[23] Battlefield 3. 2011. http://www.ea.com/battlefield3, Last

Accessed: 31 May 2011

[24] Acton, M. 2008. Ratchet and Clank Future: Tools of

Destruction – Technical Debriefing. Insomniac Games.

http://www.insomniacgames.com/tech/articles/1108/files/

Ratchet_and_Clank_WWS_Debrief_Feb_08.pdf

[25] NVIDIA, 2008. GPU Programming Guide. pg 28.

http://developer.download.nvidia.com/GPU_Programming

_Guide/GPU_Programming_Guide.pdf, Last Accessed: 01

June 2011

[26] Wavere, J. M. P. van. 2009. From Texture Virtualization to

Massive Parallelization. Siggraph 2009: id Tech 5

Challenges. http://s09.idav.ucdavis.edu/talks/05-

JP_id_Tech_5_Challenges.pdf

[27] Crause, J., Flower, A. 2010. Real-Time Deformable

Terrain Website.

http://people.cs.uct.ac.za/~jcrause/defter/index.php, Last

Accessed: 01 June 2011

https://www8.cs.umu.se/kurser/5DV051/VT09/lab/parallax_mapping.pdf
https://www8.cs.umu.se/kurser/5DV051/VT09/lab/parallax_mapping.pdf
http://www.ea.com/battlefield3
http://www.insomniacgames.com/tech/articles/1108/files/Ratchet_and_Clank_WWS_Debrief_Feb_08.pdf
http://www.insomniacgames.com/tech/articles/1108/files/Ratchet_and_Clank_WWS_Debrief_Feb_08.pdf
http://developer.download.nvidia.com/GPU_Programming_Guide/GPU_Programming_Guide.pdf
http://developer.download.nvidia.com/GPU_Programming_Guide/GPU_Programming_Guide.pdf
http://s09.idav.ucdavis.edu/talks/05-JP_id_Tech_5_Challenges.pdf
http://s09.idav.ucdavis.edu/talks/05-JP_id_Tech_5_Challenges.pdf
http://people.cs.uct.ac.za/~jcrause/defter/index.php

